
Testing for Serial Correlation of Unknown Form Using Wavelet Methods
Author(s): Jin Lee and Yongmiao Hong
Source: Econometric Theory, Vol. 17, No. 2 (Apr., 2001), pp. 386-423
Published by: Cambridge University Press
Stable URL: http://www.jstor.org/stable/3533074 .

Accessed: 22/11/2013 14:12

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

Cambridge University Press is collaborating with JSTOR to digitize, preserve and extend access to
Econometric Theory.

http://www.jstor.org 

This content downloaded from 128.84.125.184 on Fri, 22 Nov 2013 14:12:50 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/action/showPublisher?publisherCode=cup
http://www.jstor.org/stable/3533074?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


Econometric Theory, 17, 2001, 386-423. Printed in the United States of America. 

TESTING FOR SERIAL 
CORRELATION OF UNKNOWN 

FORM USING WAVELET METHODS 

JIN LEE 
National University of Singapore 

YONGMIAo HONG 
Cornell University 

A wavelet-based consistent test for serial correlation of unknown form is pro- 
posed. As a spatially adaptive estimation method, wavelets can effectively detect 
local features such as peaks and spikes in a spectral density, which can arise as 
a result of strong autocorrelation or seasonal or business cycle periodicities in 
economic and financial time series. The proposed test statistic is constructed by 
comparing a wavelet-based spectral density estimator and the null spectral den- 
sity. It is asymptotically one-sided N(O, 1) under the null hypothesis of no serial 
correlation and is consistent against serial correlation of unknown form. The test 
is expected to have better power than a kernel-based test (e.g., Hong, 1996, Econ- 
ometrica 64, 837-864) when the true spectral density has significant spatial in- 
homogeneity. This is confirmed in a simulation study. Because the spectral 
densities of time series arising in practice usually have unknown smoothness, 
the wavelet-based test is a useful complement to the kernel-based test in practice. 

1. INTRODUCTION 

Wavelet analysis originated as a new analytic method alternative to Fourier analy- 
sis in signal analysis and has rapidly grown through interactions with mathemat- 
ics over the last decade or so. As a spatially adaptive analytic method, wavelets 
provide a new useful tool for nonparametric function estimation. Because wave- 
lets are spatially varying orthonormal bases with two parameters-scale and 
translation-they are fundamentally different from the Fourier basis or Gabor 
basis (i.e., the windowed Fourier basis) and have some appealing statistical ad- 
vantages over traditional estimators such as kernel and spline methods in esti- 
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TESTING SERIAL CORRELATION USING WAVELETS 387 

mating a function with unknown smoothness (e.g., Donoho and Johnstone, 1994, 
1995a, 1995b; Donoho et al., 1996). In particular, wavelets have good time- 
frequency localization properties. Both smooth and nonsmooth functions can 
be effectively reconstructed using wavelet bases. 

Although the development of wavelet analysis has been rapidly growing, its 
application to time series analysis is relatively sparse. In time series spectral 
analysis, Gao (1993) uses wavelet shrinkage to estimate the spectral density of 
a stationary Gaussian process. Neumann (1996) derives the asymptotic normal 
distribution of empirical wavelet coefficients used to estimate the spectral den- 
sity of a non-Gaussian process. He shows in simulations that wavelet estima- 
tors outperform kernel estimators in capturing such spatially inhomogeneous 
features as peaks and spikes in the spectral density. In another development, 
Priestley (1996) provides useful links between wavelet analysis and nonstation- 
ary evolutionary spectral analysis. See also Subba Rao and Indukumar (1996) 
for wavelet application to nonlinear and nonstationary time series. 

There have been some applications of wavelet analysis to economics and 
econometrics. Goffe (1994) illustrates the application of the wavelet method to 
some nonstationary macroeconomic time series. Gilbert (1995) uses wavelets 
to estimate and test structural changes. Jensen (2000) proposes a wavelet-based 
algorithm to estimate a long memory model via the maximum likelihood esti- 
mation method. Wang (1995) applies the wavelet method to detect jumps and 
sharp cusps in stock market returns. Ramsey and his coauthors, in a series of 
papers (e.g., Ramsey, 1999; Ramsey and Lampart, 1998a, 1998b; Ramsey and 
Zhang, 1996, 1997; Ramsey, Usikov, and Zaslavsky, 1995), apply wavelets to 
various economic and financial time series and obtain some interesting results. 

In this paper, we illustrate how wavelets can be used to effectively detect 
serial correlation of unknown form. Detection and inference of serial correla- 
tion have long been of interest in time series analysis (e.g., Anderson, 1993; 
Andrews and Ploberger, 1996; Box and Pierce, 1970; Durbin and Watson, 1950, 
1951; Durlauf, 1991; Godfrey, 1978a, 1978b; Hong, 1996; Robinson, 1991; 
Whang, 1997). Among various existing tests for serial correlation, Hong (1996) 
proposes a consistent test for serial correlation using a Parzen (1957) kernel 
estimator for the spectral density of a stationary time series. The test is shown 
to have good power against both short and long memory processes. However, 
spatially nonadaptive estimation methods such as the kernel method cannot ef- 
fectively detect spatially varying local features (e.g., kinks, peaks, or jumps). It 
is well known, for example, that kernel estimators tend to underestimate a mode 
in a spectral density (e.g., Priestley, 1981). Thus, it is expected that a kernel- 
based test may have relatively poor power when the spectral density has signif- 
icant spatial inhomogeneity. Nonsmooth spectral densities with kinks, peaks, 
or spikes are not uncommon for time series arising in practice. They can arise 
as a result of strong autocorrelation or seasonal or business cycle periodicities 
in time series (e.g., Wen, 1998). It is therefore important to develop test proce- 
dures with good power against these alternatives. The wavelet method is par- 
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388 JIN LEE AND YONGMIAO HONG 

ticularly suitable for such a purpose. Here we propose a new consistent test for 
serial correlation using wavelets. The test is constructed by comparing a wavelet- 
based spectral density estimator and the null spectral density. We establish the 
asymptotic theory for the proposed test. The null distribution of the test statis- 
tic is asymptotically one-sided N(O, 1). No formulation of an alternative model 
is required, and the test is consistent against serial correlation of unknown form. 

A simulation study compares the proposed wavelet-based test with the kernel- 
based test of Hong (1996). It confirms our conjecture that the wavelet method 
outperforms the kernel method in detecting spatially inhomogeneous spectral 
features. When the spectral density has distinctive peaks or spikes, the wavelet- 
based test has better power than the kernel-based test. On the other hand, when 
the spectral density is smooth, the kernel-based test performs better. Because 
the power of the tests depends on the shape of the unknown spectrum, the pro- 
posed test is a useful complement to the kernel-based test in practice. 

In Section 2, we introduce the wavelet framework and construct the test sta- 
tistic. The null asymptotic normality is derived in Section 3, and consistency is 
established in Section 4. Section 5 presents a simulation study on the finite 
sample performances of the proposed test and the kernel-based test of Hong 
(1996). All the proofs are given in the Appendixes. Throughout, A* denotes the 
complex conjugate of A; Re (A) the real part of A; Z - {0, ? 1, ... } and Z+ = 
{1,2,...} the sets of integers, and positive integers, respectively; C E (0,oo) a 
generic constant that may differ from place to place. All convergences are taken 
as the sample size n -* oo. 

2. BASIC FRAMEWORK AND TEST STATISTICS 

2.1. Wavelet Analysis 

Let qf: IR - R be an orthonormal wavelet such that the doubly infinite se- 
quence {11k(X) = 2 jl2qf(2ix - k)} forms a complete orthonormal basis of the 
L2(1R)-space of square integrable functions, where j and k E Z are integers 
corresponding to scale (dilation or compression) and translation (displace- 
ment), respectively. Any function f(x) E L2(IR) can be expressed as a sum of 
wavelets {1Ijk(')}, which are generated from the single function q(.), the so- 
called mother wavelet. For excellent intuitive accounts of wavelet analysis, see, 
for example, Priestley (1996) and Ramsey (1998). 

Throughout, we consider multiresolution analysis, which is the most com- 
monly used analytic method in the wavelet literature (cf. Daubechies, 1992; 
Hernaindez and Weiss, 1996; Priestley, 1996; Strang and Nguyen, 1996). 

DEFINITION. A multiresolution analysis is a sequence of subspaces {Vj, 
j E Z} of L2(R) satisfying the following requirements: 

(i) Vj C Vj+ 1 and n vj = {o}, n Vj = L2; 
(ii) f(x) E Vj if and only iff(2x) E Vj+1; 
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TESTING SERIAL CORRELATION USING WAVELETS 389 

(iii) f(x) E Vj if and only iff(x - k) E Vj, for all k E Z; 
(iv) Vo has an orthonormal basis {/(. - k),k E Z}, where 4P:R -> lR such that 

r0j?k(x)dx = 1. 

From the nested structure of subspace Vj, the orthogonal complement Wj of 
Vj can be defined as Vj i) Wj = Vj+?, where (? denotes the orthogonal sum. Let 
VO be the initial subspace; then 

00 

VO (i) Wj =LO(). 
j=O 

Through dilation and translation of the scale function 4(.) (also called father 
wavelet) and mother wavelet qf(.), the sequences {+jk(X) = 2J2 (2ix - k)} 
and {qljk(X) = 2jl2q(2jx - k)} constitute a complete orthonormal basis of Vj 
and Wj, respectively. Each subspace Vj encodes the information of the signal at 
resolution level j, which can be represented by scale functions {4jk(*), k E . 
Each subspace Wj orthogonal to VJ encodes the details, namely, the difference 
of the information between the signals seen at two resolutions Vi and Vj+1. De- 
tails at level j can be represented by wavelets {J'jk(*), k E Z}. Thus, signals at 
level j combined with details at level j provide signals at level j + 1. Intu- 
itively, a small j or a low resolution level can capture smooth components of 
the signal, whereas a large j or a high resolution level can capture variable 
components of the signal. Moreover, given a resolution level j, various values 
of translation parameter k allow one to capture local features of the signal. In 
our application, the scale function 4(.) will capture the smoothest component 
of the spectral density, whereas the wavelets {k(')} will capture the differ- 
ences such as peaks and spikes. We note that requirement (i) implies that (a) the 
signal seen at a given resolution level contains all the information of the signal 
seen at coarser resolution levels and (b) any function in L2(]R) can be approx- 
imated arbitrarily well by a sufficiently fine resolution (i.e., a sufficiently large 
j). Requirements (ii) and (iii) represent scale and shift invariance, respectively. 

We first impose a standard condition on the mother wavelet ql(f). 

Assumption 1. : R --> R is an orthonormal wavelet such that 
fi (x))dx = 0, f I jf(x)Idx < oX, f qj(x)f(x - k)dx = 0 for all 
k E /, k 0 0, and fi00 0/2 (x)dx = 1. 

The orthonormality of q(Q) implies that the doubly infinite sequence {fqJk(.)} 

constitutes an orthonormal basis for L2(lR), that is, 

fjjk(X) Ilm(X)dx = 8j8km, j,l,k,m E Z, 
-00 

where 5j, = 1 if j = 1 and 5j, = 0 otherwise (cf. Daubechies, 1992). Assumption 
1 ensures that the Fourier transform of ili(.) defined by 

{f (i)) = (2T)1/2 J (x)e i-xdx, i = T 
O_ 
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390 JIN LEE AND YONGMIAO HONG 

exists and is continuous in wl almost everywhere. Note that (0) = (2)7-1/2 X 
fiTO ls (x) dx 0= , which implies that the mother wavelet qls(.) must have alter- 
nating signs. This is one of the characteristic properties of wavelets and a rea- 
son why wavelets are sensitive to changes or singularities. Note also that qfr*(w) 
l(-cw) for all w IER. 

Most orthonormal wavelets ql (.) are constructed from a father wavelet (v). 
The mother wavelet qr(-) can have bounded or unbounded support. A well- 
known compactly supported wavelet is the Haar wavelet, 

[1, 0 < x < 1/2 

b(x)= ' -1, 1/2?x<1 (1) 

LO otherwise. 

It is generated from a linear combination of 0b(x) = 1(0 ' x < 1), where 1 (.) is 
the indicator function. The sequence {+frjk(X) = 2 j/2q(2 'x - k), j, k E 2} forms 
a complete orthonormal basis of L2(R). (See, e.g., Hernandez and Weiss, 1996, 
pp. 59-61.) 

An example of wavelets with unbounded support is the Shannon wavelet 

q (x) = -2 sin(2irx) + 
cosQ(7rx) (2) 

x(2x + 1) 

This is generated from the scaling function qb(x) = sin(1Tx)/(irx). See Hernan- 
dez and Weiss (1996, pp. 61-62) for more discussion. 

We impose an additional condition for good localization of qf (-) in the fre- 
quency domain. 

Assumption 2. 

(i) l(w)l ? C(l + Icol)- for some a > 3 and some constant C E (0,oo); 
(ii) V&(t) = eiw/2b(to) or i(w) - -ieiw/2b (w), where b(.) is a real-valued function. 

Most commonly used wavelets satisfy these conditions (cf. Hernaindez and 
Weiss, 1996). For example, the Lemarie-Meyer family of wavelets is of the 
form i(wo) - ei&/2b(w), where b(.) is a real-valued and symmetric function on 
IRi. An example of this family is the Meyer wavelet, defined via the Fourier 
transforms of b(.) and i(.): 

(2r)- 1/2, col -<2v/3 

0(w) = t(27}h/2COS L [ v2 ( 2v I| o - I1, 2,/3 < It I ' 4 T/3, (3) 

O, otherwise, 
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1e (2r,)i sin V( 2 l0 -2 2 T/32 | 4w/3 

IT 3 ~~~~~~~~~~~(4) 
e [w/2(2 y-/2Cos 2 ( 4 I 4),rr3 < )wl 8T/3, 

0, otherwise 

where v(x) = 0 if x ? 0 and v(x) = 1 if x ? 1. For x E [0,1], v(x) can be 
chosen in terms of the regularity (e.g., v(x) = x2(3 - 2x)) with the restriction 
that v (x) + v (1 - x) = 1. The Meyer wavelet has compact support in the fre- 
quency domain and fast decay in the time domain. 

Another family of wavelets that satisfy Assumption 2 is the spline wavelets 
of positive order m E 2V. When m is odd, this family is of the form qi(w) = 

eiw/2b(w0), where b(.) is a real-valued and symmetric function; when m is even, 
it is of the form (c) - -ieiw/2b(to), where b(.) is a real-valued and odd 
function (cf. Hernandez and Weiss, 1996, (2.16), p. 161). One example of this 
family is the first order spline wavelet, often called the Franklin wavelet. It is 
given by 

C(w) (2) 1/2 s ( /2))-1/2 (5) 

( 4/1)2 

A( i) eicol2Qr)-112 
sin (w/4) ( P3(w/4 + IT/4) /(6) q()= i/(2</ 

(oi/4) 2 P3(/2)P3(/o4)) 
6 

where P3(Gw) = 2 + I cos(2wo). Another example is the second order spline 
wavelet, given by 

A(w (TY12sin3 (w/2)(7 COO = (2--)- 1/2(Z (P5((o12))- 1/2 7 
(wo/2) 3 

A ~~~~~sin 6 (w)/4) P5 (w/4 + 7/4) 1/2 

i(o /4)3( (P/2)P (/4)) (8) 

where P5(w) C coS2(2tw) + 3 cos(2w) + j . The Franklin wavelet and the 
second order spline wavelet are constructed from piecewise linear and qua- 
dratic functions, respectively. They have compact support in the time domain 
and have exponential decay in the frequency domain (cf. Hernaindez and 
Weiss, 1996, p. 149). In fact, the Harr wavelet (1) is the 0th order spline wave- 
let, but it does not satisfy Assumption 2 because its Fourier transform i (w) = 

-ieiw'/2(2.7T)-1/2sin2(wo/4)/(w/4) decays to 0 as Iw) --X oo only at the rate 
of Iw'I-1. 
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392 JIN LEE AND YONGMIAO HONG 

2.2. Wavelet Representation of the Spectral Density 

The signal described previously can be a regression function or a probability 
density function in the time domain or a spectral density function in the fre- 
quency domain. We now consider a wavelet representation of the normalized 
spectral density function f (w) of a covariance-stationary real-valued process 
{X,, t E Z}. Becausef (w) is 2i--periodic, it is not square integrable over R. We 
need to construct a wavelet basis {yjk(.),Tjk(.)} for the L2(fl)-space of 2iT- 
periodic functions, where R = [-nT, ir]. Given an orthonormal wavelet basis 

{?4)k( ), qfjk(')} of L2(R), we can always construct an orthonormal wavelet basis 
{IFjk(.)jljk(')} of L2(H) by periodizing {jk]k'), 0ijk(')} via the formula 

?Jk()- (21T) < >k + (9) 
m--co 2 i 

tjJ( (21J) E qJjk (-+m) (10) 
m=-oo0 2 7T 

(cf. Daubechies, 1992, Ch. 9; Hernandez and Weiss, 1996, Ch. 4). Both (Fjk(*) 
and TIk(.) are real valued. 

Because (9) and (10) are an infinite sum, it is convenient to use compactly 
supported wavelets so that only a finite number of terms are nonzero. Alterna- 
tively, when qfrQ() has unbounded support, one can compute fIDjk('), jk(')} from 
their Fourier transforms {IFJk(.), tIk(s)} via the formula 

00 

(Djk(oi)) (2 7T) 1/2 E ' k (h)e icoh (11) 
h=-oo 

co 

jk()-(2Xg) 1/2 E tj()itoh (12) 
h--oo 

where 

$jk(h) = (2T) 1/2f Ijk(w)e-ihdw. (13) 

'IT r7T 

'Pik(h) -=2J / iko)-Zde (14) 

By the periodization techniques (9) and (10), and change of variables, we have 

(Djk (h) = (2)1/2 k(2-gh) = e-i2 hk/2 (2i/2i)1/2?(2h/2i)2 (15) 

A 

(h) = (2 7T) 1/2 1v (2,vh) = e -i2vrhkl2j (2,g/2j)1/2+(7h) (16 
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TESTING SERIAL CORRELATION USING WAVELETS 393 

Note that the orthonormality of the periodized wavelet basis {fIjk(.),Tjk(Q)} 

implies 

7r ~~~~~00 
0 

1= j2k(&j)dco = E (h) =(2r/2j) E Jiii(2Th/2 )I2, (17) 
-Jr h=-oo h=-oo 

where the second equality follows from Parseval's identity and the last one from 
(16). By utilizing the properties of wavelets and their Fourier transforms, one 
can see how dilation and translation in periodized wavelets play their roles. 
Dilation parameter j varies dyadically, and translation parameter k varies as the 
modulation. 

Recall that {Xt, t E Z} is a covariance-stationary real-valued time series with 
normalized spectral density f(w), w E [-ir, IT]. Fourier series are most often 
used in practice to represent f(w), where the Fourier coefficients are autocor- 
relations at various lags; that is, 

00 

f(ct9 = (2r)-t p(h)e -ih(o &) E- [_-7T,7T ] (18) 
h=-oo 

where p(h) = R(h)/R(O), R(h) = Cov(Xt,X|Ih]). The wavelet basis is, how- 
ever, more effective in capturing nonsmooth features of f(w). Let VO be the ini- 
tial subspace in L2(LI). Then, we can partition L2(F1) = VO (? Ej?o W1. Without 
loss of generality, we restrict k E [1,2ji] n , because of the use of the peri- 
odized wavelet basis {Fjk('), Tjk(&)}. Thus, with the orthonormal wavelet basis 

{'(jk(k),1'jk(Q)} in L2(F1), f (w) can be expressed as 

00 2i 

f(w0) = 3004'oo(00() + EE ajkPjk(), wE [- r7,], (19) 
j=O k=1 

where the wavelet coefficients 

IT 

I300 = f f(w) %oo(w)dw, (20) 
7T 

aYjk f f (w) 'jk (to) dw. (21) 

The coefficients 3o00 and {cajk} are the orthogonal projections of f(@) on wave- 
let bases. They are real valued. Without loss of generality, we can choose a 
scale function 0bQ) such that (to) - 0 for ItoI > IT or Kb(t)I is continuous. It 
follows that (2IT) 1/2 (2kIr) 0 for k E ZZ,k = 0, and (2Tr)1/2b(0) =1 (cf. 
Hernandez and Weiss, 1996, Proposition 2.17, p. 64). Thus, Poo(w) = (2Ir)-1/2 
for wG E [-IT, IT] and /oo = (2T)-112. Consequently, we can write (19) as 

00 2j 

f(w:) = (2XT) + a E aII?((i), ) E [- T,I T]. (22) 
j=O k=1 
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394 JIN LEE AND YONGMIAO HONG 

By Parseval's identity and (16), we can also express ajk in the time domain, 
namely, 

ajk (2 i) 
- 11 

:P (h) k (h) 
h=-oo 

00 00 

= E p (h)jk(2th) = p (h) P(27Th), (23) 
h=-oo h=-oo 

where IAk(*)} is given in (16) and the last equality follows given +*(z) = 

Unlike the Fourier coefficients, {ajk} do not represent autocorrelations at dif- 
ferent lags. They are the weighted average of autocorrelations centered at vary- 
ing locations. It is intuitively clear from the expression of { ajk} why wavelets 
can capture the peaks of f(w). Suppose, for example, that f(w) has a peak at 
some frequency, say, wc = 0, which can arise when { p (h)} have the same, pos- 
itive sign and decay to zero slowly. Such a pattern can be effectively captured 
by {ajk} with sufficiently large j's. 

2.3. Wavelet Spectral Density Estimator and Test Statistic 

Suppose that we observe a sample {X, }t =. We define the sample autocorrela- 
tion function, 

- 
(h) = R(h)/R(O), where R(h) = n- t=hI+ (Xt X ) X 

(Xt_lhl - X5) Xn = n-1 En I Xt. A natural choice of the estimator for ajk iS the 
empirical wavelet coefficient 

n-i n-1 

(ik P E t j(h) jk(2irh) = E p(h) jk(27h). (24) 
h=l-n h=l-n 

Then a wavelet estimator of the spectral density f(w) can be given by 

J 2' 

!(i) = (21T<' + E E &jk"Ijk(w), w E [-T7, 1], (25) 
j=O k=lI 

where J-Jn is the finest scale corresponding to the highest resolution level 
used in the approximation. The degree of approximation (or bias) depends on 
J. The larger J is, the smaller the bias. On the other hand, J also affects the 
sampling variation (i.e., variance) of f (w). The larger J is, the larger the vari- 
ance of f(w). Given each sample size n, a suitable J should be chosen to bal- 
ance the variance and the squared bias so thatf(wo) will be consistent forf(cw). 
There are a total of EJL o 2' = + - 1 empirical wavelet coefficients in (25). 
The finest scale J should be smaller than log2n. Proper conditions on J will be 
given to ensure that the proposed test statistic has a well-defined limit distribu- 
tion. In our simulation, we will choose J via an automatic data-driven method 
by Walter (1994), which, to a certain extent, lets the data themselves determine 
a proper J given each n. 
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Now we construct a consistent test for serial correlation of unknown form, 
with expected good power against alternatives with nonsmooth spectrum. The 
hypotheses of interest are 

HO:p(h) = Oforallh E 2,h 0 O 

versus 

HA: p (h) 7 0 for some h E Z, h # 0. 

Note that HA includes all possible serially autocorrelated alternatives. Under 
the null hypothesis Ho, the spectral density f(w) becomes 

fo (w) = (2iT)-1 for all w C [- 7, Tr]. (26) 

Hence, all the wavelet coefficients {Cajk} are zero under HO. Under HA, how- 
ever, f (w) is not a constant function of w. At least one wavelet coefficient is 
nonzero. Thus, testing for serial uncorrelatedness is the same as testing whether 
all the wavelet coefficients {fak} are jointly zero. 

We now propose a test for HO versus HA using a quadratic form, defined as 

J 2j 

Q(f;fo) -f0(W)) 2d( 
- 2 (27) 

fl-(f(w) j=O k=1 

where the second equality follows from the orthonormality that 

f1Tjk( W)Tlm(Wi)dW =8j1 akm. j,k,l,m E Z. (28) 

Divergence measures other than the quadratic form could be used also, but (27) 
is convenient because it involves no numerical integration over frequency W. 
Our test statistic is constructed by properly standardizing (27); that is, 

J 2i 

Wn = 27Tn k = aj2k- (2J+ 1 - 1) {4(2J+1 - I)}I/2 (29) 
j=O k=1J 

where 21 - 1 and 4 (2j?1 - 1) are approximately the mean and variance of 
2inQ(f;fo). We could use 2X+1 to replace 2J+1 - 1, but the latter is expected 
to give better finite sample performances when J is small. 

Hong (1996) considers a class of consistent tests for serial correlation of un- 
known form using the Parzen (1957) kernel estimator for the spectral density 
f(w), which depends on Fourier analysis. Unlike the Fourier transform, (22) 
represents f (w) via the wavelet transform. For the kernel-based test, kernels 
typically put more weight on low order autocorrelations and less weight on 
high order autocorrelations. In contrast, wavelets do not necessarily weigh down 
high order autocorrelations. Instead, they impose different weights via different 
scales and translations. In this sense, the wavelet-based test is expected to have 
better power than the kernel-based test when f(w) has distinctive local features 
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such as peaks and spikes. If f(w) is smooth without singularities, however, the 
kernel-based test is expected to perform well. Our simulation study, which fol- 
lows, confirms these claims. 

3. ASYMPTOTIC NULL DISTRIBUTION 

To derive the null limit distribution of Wn, we impose the following condition. 

Assumption 3. {Xt}t=O is independent and identically distributed with 
E(X, - 4)2 = a2 and E(X, - /t)4 = /L4 < oo, where /L = EX,. A random 
sample {X,}J1 of size n E 2 is observed. 

Assumption 3 allows non-Gaussian processes as are common for economic 
and financial time series. We now establish the asymptotic normality of the 
wavelet-based test. 

THEOREM 1. Suppose that Assumptions 1-3 hold and J Jn ,-- cc, 22J/ 
n --0. Then Wn dN(O,l). 

The conditions on the finest scale J ensure the asymptotic normality of Wn. 
They are analogous to the conditions on the bandwidth (or the lag order) for 
the kernel test of Hong (1996). The finest scale J is restricted to increase at a 
slower rate than 2 log2n. In our simulation, we use an automatic data-driven 
method proposed by Walter (1994) to choose J. Although both the finest scale 
J in wavelet estimation and the bandwidth in kernel estimation are smoothing 
parameters, they are conceptually different. In particular, J is not a lag order; it 
is the integer corresponding to the finest resolution in wavelet decomposition. 
At each level j ? J, all the sample autocorrelations { p(h)}n- are used to ob- 
tain the empirical wavelet coefficients {(Xik} when qi(.) has unbounded support 
(see (24)). 

4. CONSISTENCY 

To establish consistency of the proposed test under the alternative hypothesis 
HA, we impose a condition on the temporal dependence of {XJ}. 

Assumption 4. 
{X,} ' 

is fourth order stationary with E ooR2(h) < cc 
and EUJQ - -. 1=-m I K(j, k, 1) < c, where K(j, k, 1) is the fourth order 
cumulant of the joint distribution of {Xt, Xt+j, Xt+k, X1+1}, where j, k, 1 E 2. 

The fourth order cumulant K(j, k, 1) is defined as 

K(j, k,l) = E(Xt Xt+jXt+kXt+l) - E(XtXt? Xt+kXtl), (30) 

where {XJt is a Gaussian sequence with the same mean and covariance func- 
tion as {Xt}. Cumulant conditions are widely used in time series analysis (e.g., 
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Anderson, 1971; Andrews, 1991; Hannan, 1970). The cumulant condition in 
Assumption 4 holds trivially for Gaussian processes. It is also satisfied if {Xj} 
is a fourth order stationary linear process with absolutely summable coeffi- 
cients and finite fourth moment (cf. Hannan, 1970). Andrews (1991, Lemma 1) 
provides a primitive mixing condition to ensure the cumulant condition. Neu- 
mann (1996) also uses a higher order cumulant condition. 

THEOREM 2. Suppose that Assumptions 1, 2, and 4 hold and J-Jn J-> ?c, 
23J/2/n -> 0. Let Q(f;fo) be defined as Q(f;fo) in (27) with f(.) replaced by 
f(). Then 

j- 1)1/2 
Wn P 2irQ(f;f0). 

n 

Theorem 2 implies that Wn is consistent against HA, because Q(f;fo) > 0 if 
and only if HA holds. In particular, it is consistent against fractionally inte- 
grated processes, I(d), for d < 4. The conditions on the finest scale J are weaker 
than those under Theorem 1. 

Following reasoning analogous to that of Hong (1996), it can be shown that 
Bahadur's (1960) asymptotic slope of the wavelet test Wn under HA does not 
depend on the choice of the mother wavelet i,(.). In other words, the asymp- 
totic power of Wn does not depend on the choice of fr(.). This is in contrast to 
the kernel-based test of Hong (1996, Sect. 5), for which the asymptotic power 
depends on the choice of a kernel function, with the Daniell kernel being opti- 
mal within a class of kernel functions. 

5. FINITE SAMPLE PERFORMANCE 

We now study the finite sample performances of the wavelet-based test Wn in 
comparison with the kernel-based test of Hong (1996). To study the impact of 
the choice of mother wavelet qi(.) on the size and power of W, in finite sam- 
ples, we use three wavelets-Meyer, Franklin, and the second order spline wave- 
lets. For the Meyer wavelet, we choose v (x) x for x E (0,1). We also consider 
more regular forms such as v (x) = x2(3 - 2x) for x E (0,1), but simulations 
show that the choice of v (x) has little impact on the size and power of Wn. 

Both the wavelet- and the kernel-based tests involve the choice of smoothing 
parameters-the finest scale and the lag order, which are not directly compara- 
ble because they are conceptually different. It is thus critical to choose the 
smoothing parameters by appropriate data-driven methods, which determine the 
smoothing parameters based on data information. For Wn, we employ the algo- 
rithm of Walter (1994) to choose J, where the change in the integrated mean 
squared error (IMSE) from one scale to the next finer scale is proportional to 
the sum of squared empirical wavelet coefficients. The IMSE at the scale J is 
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given by ej = E f f[ t (w) - f(o)] 2dw, where fJ(w) is a wavelet spectral den- 
sity estimator (25) using the finest scale J. The change in IMSE from J - 1 to 

J is proportional to k-l & ^k, where a(jk is the empirical wavelet coefficient at 
the scale J. One starts from the initial scale J = 0 and checks how much the 
error changes from zero to one. The grid search is iterated until we get the 
scale J at which the error increases most rapidly. Then, one obtains the finest 
scale. Here, we choose the finest scale J for which the change in error between 
J and J + 1 exceeds 100%. 

The kernel-based test of Hong (1996) is constructed by comparing a Parzen 
(1957) kernel-based spectral density estimator and the null spectral density fo(w). 
A Parzen (1957) kernel-based spectral density estimator is given by 

n-I 

fp(a9) = (21Tr)-1 I k(hlp) p(h)e-ih0, Ct -E r [ ] 
h=l-n 

where k(.) is a kernel function and p Pn is the bandwidth such that p -< oo, 
p/n - 0. 

From a standardized version of a quadratic form, the test statistic is 

Kn = {n E k2(h/p)t-2(h) - Cn(k)} {2Dn(k)}1/2, (31) 

where 

n-I 
C,(k) I (1 - h/n)k2(h/p), 

h=1 

n-2 

D,(k) = (1 - h/n)(I - (h + 1)/n)k4(h/p). 
h=1 

For the choice of kernel k(.), we use the Daniell kernel, k(z) sin(Wz)/7rz, 
z E R, which maximizes the asymptotic power of Kn over a class of kernel 
functions (cf. Hong, 1996). We choose a data-driven bandwidth p using the 
cross-validation procedure of Beltrao and Bloomfield (1987). Here, the band- 
width is determined to maximize the cross-validated log likelihood in the fre- 
quency domain, which is asymptotically equivalent to minimizing a weighted 
IMSE. We use a grid search for the optimal integer-valued bandwidth p over 
the range from 2 to 15. The algorithm is implemented by fast Fourier trans- 
form. See Beltrao and Bloomfield (1987) for more discussion. 

Two sample sizes, n = 64 and n - 128, are considered. First, we study the 
size under normal and nonnormal processes using a GAUSS pseudo random 
number generator on a personal computer. Nonnormal cases include lognormal 
and uniform processes, scaled to have mean zero and variance one. Table 1 
reports the percentage rejections of the tests Wn and Kn at the 10% and 5% 
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TABLE 1. Size at the 10% and 5% levels' 

n = 64 n = 128 

Normal Uniform Lognormal Normal Uniform Lognormal 

Kn 10% 0.115 0.138 0.097 0.124 0.138 0.098 
5% 0.081 0.096 0.079 0.086 0.102 0.070 

W1i 10% 0.123 0.135 0.112 0.152 0.127 0.111 
5% 0.091 0.096 0.089 0.096 0.088 0.072 

W2n 10% 0.138 0.136 0.114 0.145 0.128 0.114 
5% 0.094 0.102 0.085 0.094 0.093 0.077 

W3 n 10% 0.174 0.169 0.138 0.214 0.167 0.156 
5% 0.121 0.131 0.103 0.150 0.126 0.096 

a1,000 iterations. 
Abbreviations: K,, kernel-based test (Daniell kernel); W1,, wavelet-based test (Meyer wavelet); W2n, wavelet- 
based test (Franklin wavelet); W3,, wavelet-based test (Spline wavelet of order two). 

significance levels, based on 1,000 iterations. Both Kn and Wn have reasonable 
sizes at the 10% level, but they have some overrejections at the 5% level. In 
most cases, Wn tends to overreject Ho a little more than Kn. For all the three 
wavelets, Wn has more accurate sizes under the lognormal process than under 
both normal and uniform processes at the 10% level. 

Next we study the size-corrected power using empirical critical values, which 
ensure fair power comparison for the tests under study. The empirical critical 
values are obtained from 1,000 iterations for normal and nonnormal processes, 
respectively. Alternatives are chosen according to the shapes of their spectral 
densities. They are 

ARMA(4,4) :Xt + 0.1Xt_1 + 0.3Xt-4 -t + t-4, 

AR(4): Xt = 0.3Xt-4 + St 

ARIMA(0,0.2,0): (1 -B)02xt = St, BXt = Xt_D 

AR (1) : Xt =0.3Xt_1 + st, 

where 8, is i.i.d.(0, 1). We consider normal, lognormal, and uniform distributions 
for st, respectively. The first two alternatives generate spatially inhomogeneous 
features such as peaks or spikes in the spectral densities. Both ARMA(4,4) and 
AR(4) can arise from quarterly data. ARIMA(0,0.2,0) is a fractionally inte- 
grated process, a well-known long memory time series process. The spectral den- 
sity of the long memory process isf(w) = (1/27)11 - e ` 

I 2", for 0 < d < 0.5. 
It is infinite at wi = 0 but is quite smooth with no jumps elsewhere. Figure 1 de- 
scribes the autocorrelation function p (h) and spectral density function f(w) for 
each of the four alternatives. The autocorrelations are generated up to lag 20 using 
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(1) ARMA(4,4) (2) ARMA(4,4) 
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FIGURE 1. Sample autocorrelation (1) and true spectral density (2): ARMA(4,4) 
and AR (4). 

a realization of the random sample {Xt}2'??00. The spectral densities are depicted 
for cl E [0, ir] (the spectral density of the long memory process is depicted 
for w GE (0, -]). There exist distinctive local features (kinks or spikes) for 
ARMA (4,4) and AR (4). On the other hand, the spectral density of AR(1) has no 
spike at any frequency. 
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(1) ARIMA(0,0.2,0) (2) ARIMA(0,0.2,0) 
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FIGURE 1 (CONTINUED). Sample autocorrelation (1) and true spectral density (2): 
ARFIMA(0, d,O) and AR(1). 

Table 2 reports the power at the 10% and 5% levels when the innovations are 
normally distributed. For ARMA(4,4) and AR(4) processes, W, has better pow- 
ers than Kn regardless of the choice of the wavelet qf(i) and the sample size n. 
Among the wavelets, the Meyer and Franklin wavelets have slightly better pow- 
ers than the second order spline wavelet for the smaller sample size (n = 64). 
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TABLE 2. Size-corrected power under normal innovations' 

K& WI, W2, W3, 

DGP 10% 5% 10% 5% 10% 5% 10% 5% 

n = 64 
ARMA(4,4) 0.507 0.392 0.719 0.534 0.707 0.533 0.674 0.516 
AR(4) 0.310 0.219 0.476 0.340 0.482 0.347 0.447 0.332 
ARIMA(0,0.2,0) 0.410 0.298 0.352 0.246 0.341 0.238 0.331 0.235 
AR(l) 0.643 0.523 0.463 0.320 0.468 0.333 0.460 0.352 

n = 128 
ARMA(4,4) 0.914 0.842 0.981 0.961 0.980 0.955 0.964 0.898 
AR(4) 0.599 0.515 0.774 0.684 0.760 0.673 0.710 0.597 
ARIMA(0,0.2,0) 0.710 0.650 0.618 0.521 0.601 0.522 0.544 0.435 
AR(1) 0.912 0.869 0.731 0.652 0.723 0.636 0.683 0.585 

1,000 iterations. Power is computed using empirical critical values obtained from 1,000 iterations under an i.i.d. 
N(O,1) process. 

Abbreviations: Kn, kernel-based test (Daniell kernel); W1,, wavelet-based test (Meyer wavelet); W2n, wavelet- 
based test (Franklin wavelet); W3,, wavelet-based test (Spline wavelet of order two). 

For the larger sample size (n = 128), all the three wavelets deliver similar pow- 
ers, which is consistent with the asymptotic theory. For the long memory pro- 
cess, Wn performs similarly to Kn. Although there is a peak at zero frequency, 
the spectral density of the long memory process is rather smooth elsewhere, and 
the kernel method performs well for this alternative. On the other hand, Kn out- 
performs W, in detecting AR(1), which has a spatially homogeneous spectral 
density with no peaks. 

Tables 3 and 4 report the power when the innovations are lognormally 
and uniformly distributed, respectively. Again, Wn is superior to K, against 
ARMA(4,4) and AR(4). Each wavelet performs quite similarly and dominates 
Kn, particularly against AR(4). For the long memory process, Wn has better 
power than Kn for n = 128 when innovations are lognormally distributed, but 
when innovations are uniformly distributed, K, outperforms Wn. Also, Kn ob- 
viously outperforms Wn against AR(1) under both lognormal and uniform in- 
novations. This evidence, though limited, confirms the theoretical claims that 
the wavelet method can more effectively detect spatial inhomogeneity of the 
spectrum than the kernel method. The power of the tests clearly depends on 
how spatially inhomogeneous the spectral density is. 

In summary, we observe that (1) the choice of wavelets, in general, has 
little effect on the power of the wavelet-based test Wn, as expected from the 
asymptotic theory and (2) the wavelet-based test Wn has better power than the 
kernel-based test Kn when the spectral density exhibits distinct local features. 
When the spectral density is smooth, however, the kernel-based test K,, per- 
forms better. 
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TABLE 3. Size-corrected power under lognormal innovationsa 

Kn WI, W2, W3, 

DGP 10% 5% 10% 5% 10% 5% 10% 5% 

n = 64 
ARMA(4,4) 0.559 0.322 0.697 0.453 0.697 0.440 0.657 0.371 
AR(4) 0.285 0.147 0.427 0.252 0.434 0.245 0.392 0.194 
ARIMA(0,0.2,0) 0.676 0.538 0.689 0.552 0.688 0.531 0.707 0.557 
AR(1) 0.658 0.440 0.371 0.222 0.381 0.215 0.385 0.204 

n 128 
ARMA(4,4) 0.938 0.842 0.982 0.937 0.980 0.942 0.972 0.920 
AR(4) 0.630 0.467 0.808 0.672 0.787 0.688 0.773 0.640 
ARIMA(0,0.2,0) 0.834 0.782 0.933 0.875 0.914 0.861 0.941 0.891 
AR(1) 0.953 0.890 0.726 0.599 0.713 0.612 0.722 0.600 

a 1,000 iterations. Power is computed using empirical critical values obtained from 1,000 iterations under an i.i.d. 
lognormal process. 

Abbreviations: K,, kernel-based test (Daniell kernel); Wln, wavelet-based test (Meyer wavelet); W2, wavelet- 
based test (Franklin wavelet); W3, wavelet-based test (Spline wavelet of order two). 

6. CONCLUSION 

We propose a wavelet-based consistent test for serial correlation of unknown 
form. The test is constructed by comparing a wavelet-based spectral density 

TABLE 4. Size-corrected power under uniform innovationsa 

Kn WI, W2n W3n 

DGP 10% 5% 10% 5% 10% 5% 10% 5% 

n = 64 
ARMA(4,4) 0.500 0.367 0.699 0.507 0.680 0.500 0.658 0.480 
AR(4) 0.280 0.212 0.486 0.330 0.479 0.334 0.449 0.290 
ARIMA(0,0.2,0) 0.373 0.288 0.287 0.191 0.277 0.185 0.263 0.177 
AR(1) 0.629 0.520 0.449 0.301 0.435 0.289 0.435 0.291 

n = 128 
ARMA(4,4) 0.875 0.746 0.979 0.943 0.979 0.950 0.952 0.942 
AR(4) 0.570 0.441 0.785 0.692 0.769 0.681 0.746 0.716 
ARIMA(0,0.2,0) 0.704 0.601 0.590 0.503 0.573 0.504 0.535 0.518 
AR(1) 0.903 0.837 0.755 0.646 0.748 0.668 0.725 0.706 

1,000 iterations. Power is computed using empirical critical values obtained from 1,000 iterations under an i.i.d. 
uniform process. 

Abbreviations: Kn, kernel-based test (Daniell kernel); Wln, wavelet-based test (Meyer wavelet); W2, wavelet- 
based test (Franklin wavelet); W3, wavelet-based test (Spline wavelet of order two). 
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estimator and the null spectral density. The null asymptotic distribution of the 
proposed test is one-sided standard normal. Our simulation study shows that 
the wavelet-based test is more powerful than the kernel-based test of Hong 
(1996) when the data generating process has distinctive local spectral features, 
which confirms the theoretical claims that wavelets can effectively detect spa- 
tial inhomogeneous features. On the other hand, when the spectral density is 
smooth with no peaks or spikes, the kernel-based test outperforms the wavelet- 
based test. Because the spectral densities of time series arising in practice usu- 
ally have unknown smoothness, the wavelet-based test is a useful complement 
to the kernel-based test in practice. 
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APPENDIX A 

To prove Theorems 1 and 2, we first state a useful lemma, which is proved in Appendix B. 

LEMMA A. 1. Suppose that Assumptions 1 and 2 hold and J -* oo, 2J/n -* 0. Define 

bj(h, m) = aj(h, m) + aj(-h,-m) + aj(h,-m) + aj(-h, m), 

where aj(h, m) = 2f> t/ 2, Jk(27Th)j$((21m). Then 

(i) b1(h, m) is real valued, bj(0, m) = bj(h,0) = 0, and bj(h, m) = bj(m, h); 
(ii) En-IEn-1 h'I bj(h,m) = o(2(1+v)J) forO ' v _ 1/2; 
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(iii) hl{ 
n-- 

I1 
- 

bj (h, M)112 =0(2j); 
(iv) En O{(J? l)2-'n; ()hi= 1h2= lt.m- bj(hj,m)bj(h2, M)112 == O{(J + 1)2j}; 
(v) Zh }bj(h,h) = (2J+1 I ){i]. + O[(J + 1)/2J + (2 J/n)2al-]}, where a is in 

Assumption 2; 
(vi) h 

I 
2 Vn I 

b2(h,m)-2(2J+i - l){l + o(1)}. 

Proof of Theorem 1. For simplicity and without loss of generality, we assume 
E(Xt) = 0 and consider R(h)-=- En = I hI+ IXXl-I It can be shown that subtract- 
ing the sample mean X, = n 1 Itn-, Xt from {Xt has no impact on the limit distribu- 
tion of the test statistic Wn. Using (24), we have 

J 2i J 2-i n-I nn-i 

2 Tn ak 2 7n I 1: E 
- 

(h) k(2 h) 1 (m (2g) 
j=O k= I j-Ok h=i -n m=1-n 

n-I n-i 

-n E E ~aj (h, M) (h) p(m) 

n-1 n-I1 

n > bj(h,m)j3(h) i(m), (A.1) 
h=1 mt= 

where the last equality follows from reindexing and the definition of bj(h, m). 
Using p(h) = R(h)/JR(0) and R(0) - 2= Op(n1 2) by Assumption 3, we have 

n-1 n-I n-i n-i 

n bj(h,nm) (h) p(m) =- n-4 n E bj(h,m)RJ(h)R(m) 
h=1 m:=l1 h-= m=1 

n-i n-i 

R In ( )( -} bj(h, m)R-(h)R-(m) 
h=1 m=1 

n-i n-i 

O-cr 4n f E bJ(h,m)R(h)R(m) + Op(2J/n 12), (A.2) 
h-=1 m-=1 

where the second term is of the indicated order of magnitude because 

n-1 n-I n-1 n-I 

E E~ ya bj (h,m)R'(h)R (m) |-c CMI -1 
E f. Jbj(h,m)j = O0(2jln) 

h=1 mnz1 h-1 n=l 

given ER2(h) ? Cn-1 and Lemma A.l(ii). 

We now focus on the first term in (A.2). Given R(h) = n- h+1Xtth, 

n-I n-I n-i n-I n n 

n E ) bj(h,m)R(h)R(m) n - E btj(h,m) E E XtXt-hXsXs-m 
h-1 mn=1 h=i m=l t=h+l s=n+i 

n-I n-I 

An- E Y, Bj (h, m) 
h=l1 nz=l 

n n h n n m 

x Ef E E E E I Xt Xt-h Xs X-m 
t=1 S=1 t= I v=M2+rI t=1 S=1/ 

=An + Bln -B2n -B3n~ (A.3) 
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TESTING SERIAL CORRELATION USING WAVELETS 407 

where 

n-I n-I n t-1 n s-i 

An = n- bj (h, m) + XtXt-hXsXs-. 
h=A m=l t=2s=1 s=2 t=l 

n-I n-I n t-I 

= 2n-1 , , bj(h, m) , , XtXt-hXsXs_m given bj(h, m) = (m, h), 
h=1 m=1 t=2 s=lI 

n-i n-1 n 

Bn = n-1 bJ (h, m) X Xt-h Xt-m, 
h=1 m=i t=l 

n-I n-1 h n 

B2n = n-1 I 
' 

bj(h,m)l I XtXt-hXsXs-mi 
h=1 m=l t=lI s=m+I 

n-I n-1 n m 

B3n = fl bj(h, m) z z XtX[hXsXs-n 
h=1 m=1 t=l s=l 

Proposition 1 shows that the U-statistic An is dominant. 

PROPOSITION 1. Suppose that Assumptions 1-3 hold and J oo, 22J/n - 0. Then 

2 J/2{2rn o ,J=O - - (22i 1 - 1)} = 2 A + op(l). 

We now decompose An into the terms with t -s > q and t - s ' q, for some q E Z+: 

n-1 n-I / n t-q-t n t-I \ 

An 2n-1 b E (h,m) ( E + ? )X XtXthXsXs-m 
h= 1 m= 1 \t=q+2 s= 1 t=2 s=max(t-q, 1)/ 

Bn + B4n, say. (A.4) 

Furthermore, we decompose 

q q q n-I n-In-I\ n t-q-1 

Bn = 2n-1 + EJb bj(h,m) XtXthXsXs-X 
h=l m-1 h=l m=q+1 h-q+l m=/ t=q+2 s=l 

= Un+ B5n + B6n, say, (A.5) 

where B5n and B6n are the contributions from m > q and h > q, respectively. 
Proposition 2 shows that An can be approximated arbitrarily well by Un under a proper 

condition on q. 

PROPOSITION 2. Suppose that Assumptions 1-3 hold, J -* oo,22J/n - 0, and q-- 

qn -* oo,q/2J -* oo,q2/n -* 0. Then 22An = 2-12Un + op(1). 

It is much easier to show the asymptotic normality of Un than of An, because for Un, 
{XtXth} and {XsXs_m} are independent given t - s > q and 0 < h, m ? q. 

PROPOSITION 3. Suppose that Assumptions 1-3 hold and J -* oo,22J/n -* 0, 

q/2J -* oo,q2/n - 0. Let A2 -EU 2. Then 4(2J+? - l)o8/A2, -* 1, and A- Un *d 

N(0,1). 

Propositions 1-3 and the Slutsky theorem imply Wn *d N(0, 1). The proof of Theo- 
rem 1 will be completed provided Propositions 1-3 are shown. 
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Proof of Proposition 1. By (A.l)-(A.3), we obtain 

J 2i 

2-rn , j2k - (2j+1 -1) = + ( (2`1--1)) - 2n-B3} 
j =O k=1 

+ Op(2j/n 1/2). 

We shall show that (i) 2J/2 ln - 0- (2`1 - 1)} -*P 0; (ii) 2 j2B2n >P 0; 
(iii) 2-2B3A -->p 0. 

(i) Given Assumption 3 and E(X2XthXtm) -4hm for h,m > 0, we have 

n 2 

E (X2Xt_hXt_n - X 48hm) c Cn for any h, m > 0. 

It follows by Minkowski's inequality and Lemma A. 1 (ii) that 

n-1 n n \2 1/2 2 
B -EB n-2 J bj(h,m)l E (X2XthXt m-45hm)) J/ 

h=1 m=I t=l 

n-1I n-I1. 2 

Cn-1 E E bJ(h, m)} 0(22j/n). 
h=lI m=l 

Hence, by Chebyshev's inequality, we have 

Bn- EBI, = Op(2j/n1/2). (A.6) 

Next, given E(X2XthXtm) - -4hm for any h,m > 0, and Lemma A.l(v), we have 

n-I 

EBln = (T , bj(h, h) 4(2J+1 - 1){1 + O[(J + 1)/2J + (2J/ln)2a1 ]}. (A.7) 

Combining (A.6), (A.7), 22J/n -- 0, J -i oo, and a > 
3 then yields 

2-JI21B n-4(2j+1 -1)1 = 2 -J/2fBnEl +. El-4(2j+1 -1)} 2 n- - l)}n - EB1n + EBIn - 4J1 l) 

= Op(2j/2/n1/2 + (J + 1)/2J/2 + 2J(2a-1/2)/n2e-1 ) 

= op(l). 

(ii) Next, we consider B2n. Given Assumption 3, we have that for any h, m > 0, 

h n \2 _ h 4 n 4 1/2 
E ( s+XtXt-hXXsXs-m) ? E E( XtXt-h E E X(s sXSm) Cnh. 

t= 1 s=m'r1 / _ t= 1 s=m+ I 

It follows by Minkowski's inequality and Lemma A. 1 (ii) that 

(n-I n-1 _ h n 2 1/2 2 

EB n : 4n-2 bJ(h,m)L E s +1XtXthXsXsm)1 
th=I m= I t=1 s=7n'r 

(n-I n-I 2 
? 4Cn-1 {E E h1/2 bj(h,m), m = 0(23J/n). 

th=1 m-1I 

Hence, 2/2B2n = OP(2j/nl2) = op(l) by Chebyshev's inequality and 22J/n - 0. 
(iii) By reasoning similar to (ii), we can obtain 2?-J2B3n = Op(2J/n1/2) = op(l). U 
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TESTING SERIAL CORRELATION USING WAVELETS 409 

Proof of Proposition 2. Given (A.4) and (A.5), An = Un + B4, + B5n + B6n- It 
suffices to show 2-J/2B! -P 0 forj = 4,5,6. 

(i) We first consider B4,. Given Assumption 3, 

n t-1 \2 

E I E XtXt-hXsXs-m <Cnq forh,m >O. 
t=2 s=max(t-q,lI)/ 

It follows by Minkowski's inequality and Lemma A. 1 (ii) that 

rn-I n-I n t-1 \2 1/2 2 

EB42 ?4n -2 bJ(h,m)l E ( XtXt_hXsXs-m) / 
h= 1 m= 1 _ t=2 s= t-q/ J 

n-I n-1 2 

? 4Cqn' >: 1 bJ(h,m)j} O(q22j/n). 
h=1 m=1 

This, along with Chebyshev's inequality and q2/n -* 0,22J/n - 0, implies 2-J/2B44n 
OP(q 1/22J/2/n1/2) = op(l). 

(ii) Next, we consider B5n. Define the partial sum 

t-q-1 

St-q-1(m) = , XS Xs-m (A.8) 
s=l 

Noting that XtXth is independent of St-qil(m) for 0 < h ' q and m > 0, we have 

n q n-1 2 

EBs2n = 4n-2E E XtXt-h E bj(h,m)St-q_I(m) 
t=q+2 h= 1 m=q+1 

n q t-q-1 n-I 

4o 2 n n2 b2(h,m) 
t=q+2 h=l s=1 m=q+l 

n-1 n-1 

a Ya8 bi (h, m) = o (2j), 

h=l m=q+l 

where the last inequality follows from q -> oo,q/2J -* o0, and Lemma A.1 (vi). There- 
fore, 2 J2B5n -*P 0 by Chebyshev's inequality. 

(iii) Finally, we consider B6n. Because Xt is independent of Xt-hSt-q-1(m) for h, 
m > 0, 

n n -1 2 

EB6n = 4o-2 n E E bJ(h,m)XthSt-q-l(m). (A.9) 
t=q+2 Fh=q+1 m=1 

We now decompose the expectation in (A.9): 

n-I n-i 2 n-1 n-I t-q-1 2 

E , , bj(h, M)Xt2hSt-q1(m) E E E E bj(hLM)Xt-hxsxs-m 
-h=q+ - m=1 mh=q+? m=1 s=1 

? 4(Clnt + C2nt + C3nt), (A.10) 
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where 

n-I n-I t-q-1 2 

Cln,t = E 1: 1: bJ(h,m)Xt-hXsXs_m l (t-h > s) 
h=q+l m=l s=1 

n-I n-1 t-q-1 2 

C2nt =E , E bJ(h,m)Xt-hXsXs_ml(t-h=s) 
= h=q+l m=l s=1 

n-I n-I t-q-1 2 

C3nt =E E '~' 
E bJ(h,m)Xt-hXsXs-ml(t-h<s) 

Lh=q+1 m=l s=1 

For Clnt, because Xt-h is independent of {XsXs_m}It-q-1 for t - h > s and m > 0, we 
have 

n-i t-q-1 n-I n-I n-I 

1 nt = 3 3 bi(h,m)1(t-h>5)?c6t 3 E bi(h,m). (A.11) 
h=q+l s=i m=1 h=q+l m=I 

For C2nt, noting that Xt-hXsXs-m Xt-hXt-h-m given t - h = s, we have 

n-I n-I 2 n-1 n-I 2 

C2t 3 E 3 bJ(h,m)X2 hXthm)' C b (h,m) (A.12) 
h=q+1 m=1 h=q+1l m= 

For C3nt, noting that Xs is independent of {Xt-hXs-m} for t - h < s and m > 0, we have 

t-q-1I n-I n-1 2 

Cnt 
= o2 E E( 3 bJ(h,m)Xt-hXs-m1(t-h < s)h 

s=l h=q+1 m=l 

where 

n-1 n-I 2 

E 3 bJ(h, m)Xt-h Xs-m l (t - h < s) 
h=q+1 m=l 

n-1 n-I 2 

? 2E ( 3 bJ(h,m)XthXs,ml (t - h 0 s - m) 
h-=q+ 3 m= 1 

n-I n-1 2 

+ 2E 'Y 1 bj (h,M)Xt-h Xs-n I(t -h = s -m) 
h=q+1 m=l 

n-I n-1 n-I 2 

?<C b2(h,m) + bj(m+t-s,m)l. 
h=q+ mI Im=l 

It follows that 

n-i n-I n-1 n-i 2 

C3nt ? Ct 3 3 b2(h,m) + C ( 3 3 bj(h,m) * (A.13) 
h=q+1 m=I h=i m=1 
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Combining (A.9)-(A. 13), Lemma A. 1 (ii and vi), and q -> oo, q/22' -* 00 yields 

n-I-I i n-I n- \2 

EB6n 
_ C 3 b(hm)+ Cnl3 3b J(h,m)j) =o(2J)+O(2 2J/n). 

h=q+1 m=i h=I m=I 

Thus, 2-Jl2h6n -->P 0 by Chebyshev's inequality and 22J/n -* 0, This completes the 
proof. U 

Proof of Proposition 3. We write Un = n1 Lt=q?2 Un,, where 

q 

Unt 2Xt 3 Xt-hHt-q_l(h), (A.14) 
h=I 

where Ht-q-i(h) =E = I bj (h, m)St_qi - (m) and St-q_ I(m) is defined in (A.8). Let .t 
be the sigma field consisting of Xs, s ? t. Because {XtXt,h} is independent of Ht-q- I (h) 
for 0 < h ? q, {Unt, Ft-I} is an adapted martingale difference sequence, with 

n 

A2 =n--2 1: E U,2t 
t=q+2 

n q q 
= 4o-8n-2 3 (t-q-1) 3 3 b2(h,m) 

t=q+2 h=i m=I 

q q 

= 2o8(l - q/n)(l - (q + 1)/n) 3 3 b2(h,m) 
h=I m=i 

= 4 (2j+ - 1)8{l + o(l)}, (A.15) 

by Lemma A.l(vi) and q -* oo,q/2j -* oo,q2/n - 0. It follows that 4(2j+i - 1) 
8/A2 __- 1. 

We apply Brown's (1971) martingale limit theorem by verifying his two conditions: 
(i) An2fl2 t=q+nE[Ur7tl(CUntl 2 enA) - 0 for all e > 0 and (ii) A2En2t X 

7t=q+2E(Un2tj|t-j1) -*P 1. Because 

n n r 
A2n n2 3 E[Un2tl(IUntj > EnA )] A n2 n u2dF,(u) 

t=q+ 2 t=q+2 u|>enA, 

n 

'A4n4E2 E EUn.t, 
t=q+2 

where Fnt(u) is the cumulative distribution function (c.d.f.) of Unt, it suffices for (i) if 
Aj4n-4 En +2EUn4t -* 0. Given the independence between Xt-h and Ht-qi_(h) for 0 < 
h ? q, we can use the iterated expectation EUn4t = E[E(U,4t -Ft-qi)] and obtain 

q ~~~~~4 
EUn,t = 16AL4E L3 Xt-hHt-q-(h) 

C h=l 

q ~~~~~~~2 
48A14 (X4h ) 12(EHt4 q - (h))1/ 

h=I 

q q ]2 
c t 2 bJ '(h, m) =0 (t 222J) 
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by Lemma A. 1 (vi), where we used the fact that given Assumption 3, 

t-q- I q \4 

EHt4 q-I(h) >E Xs E bj(hm)Xs-m) 

t-q- 1 _ q 4 -1/2 \2 

c C , (EX,4)12 E(> bj(h,m)Xs-m ) 

q 2 

Ct 42 X2(hH m) (A.16) 
m=l 

h= 1~ ~ ~~n ,t -) 

It follows that condition (i) holds because An n- tnq12 EUn4t- = t - (n) 
Next, we verify condition (ii), which holds if AS4E(m n2 -nA2n) O,, where 

n 

u2 = -2 :E (Un2| itl) 

t=q+2 

Given E(Xt_hl Xt-h2)-2 5h, h2 for hl, h2 > O, we have 

q \2 

E (Un2t|.Et-,) = 4o- 2 >, Xt-hHt-q- 1 (h) 
h=eoo 

q q q 
= 4 c4 Hq( Ht24o > (h) + 4 ,m (Xt-hlmXt-h2 S ( S h2 2) 

h=l h2-1 h=1 

X Ht-q-j(h)Ht-q- t-(h2) 

q 
= 4o 4Y W-q It X(h) + Vlnt, say. (A.17) 

h=1 

Next, using the definitions of Ht-q_l(h) and St-q- I(M) in (A. 14) and (A. 8), we 
decompose 

q q q q 
4 >, Ht~-q-Jh) = f4 , I E bj(h,mj)bj(h,m2)St-q- X(M)St-q- (m2) 

h=1 h=1 m2=1 m11 

q q q t-q-1 

X4o-4E E X bj(hmlj)bj(hXsim 7 2Xs 

=W~~ + V2ri~~~,M2say.s (A Xs8m 

h=l1 M2=1 M1=1 s=l 

q q q 

+8fT4'Y Y, Y bj(h,mj)bj(h,M2) 
h=1 M2=1 ml=1 

t-q-1 S2-1 

X E E XS2 XS2-M2 XSIXS]-M 
S2=2 51j=1 

=Wnt + V2no7 say. (A.18) 
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Finally, noting that E(XsXs_m0Xs-m2) = 4mim2 for ml,m2 > 0, we obtain 

q q 

wlt 4 4(t-q - I)o8 b , 2(h, m) 
h=l nm=l 

q q q t-q-1I 

+r 4of4 , E bj(h,ml)bj(h,M2) 7' (XI s-Ml XI-M2- rMl M2) 
hil m2=1 m1=l s=l 

=EU,2t + V3nt, say. (A.19) 

It follows from (A.17)-(A.19), C, inequality, Lemma A.2, which follows, and (A.15) 
that 

3 n \2 3n \2 

An4E(U > A2n An4E ( n 2- V)f ) ' 4An2 E n+2 r+ jn2 
j= 1 t=q+2 / j= 1 t=q+2 J 

= O{q/n + (J + 1)/2J} * 0 

given q2/n -* 0, J -- oo. Hence, condition (ii) of Brown (1971) holds, and so A-' Un *d 

N(0, 1). The proof of Proposition 3 will be completed if Lemma A.2 is shown. X 

LEMMA A.2. Suppose that the conditions of Proposition 3 hold. Then 

(i) E(n -2 En=+ Vlt2 = O (q2 2J/n); 
(ii) E(n2 Et=q+2 V2nt)2 = O{q22J/n + (J + l)2J}; 

(iii) E(n-2 Etn=q2 V3nt)2 = 0(22J/n). 

Proof of Lemma A.2. (i) We first write 

n \2 n t2 

E 1: Vint) 2 fa 1 E(V1nt2V1ntj) 
t=q+2 t2=q+2 t1 =q+2 

n t2 n t2-q-1 

= 2 , E E(Vlnt2V nt,) + 2 E E E(Vlnt2VIntl). 
t2=q+2 tl=max(q+2, t2-q) t2=2q+3 tl=q+2 

(A.20) 

Because {Xt2h}= I is independent of {Ht2qi(h)}qi, we have E(Vintlfq2=q)0. 
Moreover, {X2qh}=I is also independent of Vlntl for t2 - tl > q. Hence, we have 

E(Vlnt2VInti) = E[E(V1nt21qt2iq_1)V1ntj] = 0 when t2 - tl > q. Thus, the second term 

in (A.20) is zero. 
We now compute the order of magnitude for the first term. Again, using the facts that 

{Xth}= l is independent of {Ht-ql(h)}jq= and EV?2nt = E[E(V,2,t I we obtain 

EF82 t = (Xt-h, Xt-h2 - h1h2)Ht-q hlh2)Ht-q-1(h2) 
h2=1 h1=l 

q q 

C C E E E{H 2 qi1(hl)H-q-1(h2)} 
h2=1 h,=l 

q q )2 

ct 2 b 2 b(h, m)) = (t222J) (A.21) 
h=l mn=l 
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414 JIN LEE AND YONGMIAO HONG 

given Lemma A. 1 (vi), where we made use of the fact that 

E{H7-q-I(hI)Ht7-q-I(h2)} C {EHt qI(hi)EHt q-(h2)}1/2 

q q 

? Ct2 E bJ2(h1,m) I b 2(h2,m) 
m=1 m=l 

by Cauchy-Schwarz inequality and (A.16). Hence, we have E(n2 t=q+2 Vlnt)2 
0(q22J/n) from (A.20) and (A.21) and Cauchy-Schwarz inequality. 

(ii) We decompose V2nt into the sums with s2 - s1 ? q ands2 - SI > q: 

q q q /t-q- I S2_ I t-q-1 S2-q-1 

V2nt = 8cr4 E Y, bj(h,mj)bj(h,m2)(Y s + t-- 

h=I mn2=l m1=l S2=2 s Imax(1,s2-q) S2=q+2 sjl/ 

X X52 X 2M2XSIXS -Ml = V21nt + V22,t, say. (A.22) 

We first consider V21nt. For any m1,m2 > 0, we have 

/t-q-I s2-1 2 

E | 7 
XS2 E XS2fM2 XsI XsI -ml 

s2=2 s1 =max(l, s2-q) 

t-q- / s2-1 2 

= 2 , E E Xs2M2 XSIXSI )21 
52=2 s jm=max(S2-q) 

t-q- 1 S2 1 

= 0-2 E I E(X S22 mXsl Xsl_m1)2 _-: Ctq. 
s2=2 sj=max(1,s2-q) 

Hence, by Minkowski's inequality and Lemma A. 1 (iii), 

/ n \2 q q q ]2 

E n-2 E V2lnt Cqn-1 E E E lbj(h,ml)bJ(h,m2)1} = O(q22J/n). 
t=q+2 / h=I M2=1 M1=1 

(A.23) 

Next, we consider V22nt. Put 

q 

Zs- 1 (h) = , bj(h, m)Xs 
m=1 

Then we can write 

q t-q-1 s2-q-1 

V22nt = XS2 ZS2h1 (h)Xsl Zsl I (h)- 
h= 1 S2=q+2 sl = I 
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TESTING SERIAL CORRELATION USING WAVELETS 415 

Because X, is independent of Zs- I(h) for h > 0, and because {Xs2, Zs2_I(h)} is indepen- 
dent of {Xs1,Zs,-1(h)} for s2 - sI > q and 0 < h ? q, we have 

t-q-1 rq s2-q-1 12 

E(V22nt) = 64o- 10 Et Z2_1 (h) , Xs>ZSI-1(h) 
s2=q+2 h=1 sI1 

t-q-1 q q 

= 64o-10 Y E Y E{Zs 2_(h,)Zs2-l(h2)1 
s2=q+2 h = 1 h2=1 

S2-q-1 / S2-q 

X E -1Xs,Zsl - 1(hi ) E XslZsl - 1(h2)J 

t-q-1 S2-q-1 q q 

= 64o12 E E E , E{Zs21 (h,)Zs2 l(h2)1 
s2=q+2 s1=1 hI=1 h2=1 

X E{ZsI_1(hj)ZsI_1(h2)1 

q q q 2 

3 32 o- 6 1t2 : 1: I bj(h , m) bj(h2, M) 
hX=l h2=1 m=l 

where the last inequality follows from the fact that 

q 

EfZs-l (hl )Zs_ (h2)= j2 2 
bj(hj,m)bj(h2,m). 

m=1 

It follows from Minkowski's inequality and Lemma A.l (iv) that 

n \2 n \2 

E n-2 E V22nt n-2 E (EV222nt)112 = O{(J + 1)2J}. (A.24) 
t=q+2 /t=q+2/ 

Combining (A.22)-(A.24) yields E(n2 tn=qJ2 V2"t)2 0{q22J/n + (J + 1)2J}. 
(iii) Write 

q q q 

V3nt 
= 4U4 a 71 lbj(h, m ) bj(h, M2) 

h= m2=1 m=1 

t-q- I 

X a (Xs - J 2)XsmlXSn2 

t-q-1 

+ E 2(XSMl Xs_m2 - 2 
MIM2) V31nt + V32non say. (A.25) 

s=l 

By Minkowski's inequality, we have 

q q q 

EV 2jnt 16 o8 f Ibj(h,m1)bj(h,m2)I 
th=1 M2=1 mI=1 

_ t-q-1 2 1/2 2 

X E E 
(Xs2 - 0J2)Xsm XsM2 1/ 

? t{ q (2}2 
CCt} | E I b.,(h, m)l 0(t22J) (A.26) 
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416 JIN LEE AND YONGMIAO HONG 

by Lemma A. 1 (iii). Similarly, we have 

q /q \2 2 

EV322t Ct {a | I bj(h,m)) } = O(t22J). (A.27) 
h=1 \m=l 

It follows from (A.25)-(A.27) and Minkowski's inequality that E(n-2 "tq+2 V3n,)2 

O (22J/n). U 

Proof of Theorem 2. Given 23J/2/n -* 0, we have {2(2J+1 - l)1/2/n}Wn = 

2i7rQ(f;fo) + o(l). To show Q(f;fo) ->P Q(f;fo), we decompose 

Q(f;fo) = Q(f;fo) + Q(f;f) + 2 {7(w) -f(w)}{f(w) 
-fo(wo)}dw. 

It suffices to show Q(f;f) -*P 0, because the last term is op(l) by Cauchy-Schwarz 
inequality. 

Now, define the pseudo estimator 

J 2' 

f(w,) = (2i7r)1 + z ; &jk*jk() (A.28) 
j=O k= 1 

where &jk = Eh=I n pf(h)Ijk(2,Th) and p(h) - I(h)/u2. Also, put 

J 2' 

fj(w) = (27T)l + E 7 ajk*jk(J()- (A.29) 
j=O k=l 

Noting that f(w)-f(w) = (w) -f(w) + f(w) - Ef(w) + Ef(w) -fj(w) + fj(w) - 

f (w), we have 

Q(f;f) < 8Q(f;f) + 8Q(f;Ef) + 8Q(Ef;fj) + 8Q(fj;f). 

We shall show that (i) Q(f;f) ->P 0; (ii) Q(f;Ef) -"P 0; (iii) Q(Ef;fj) - 0; 
(iv) Q(fi;f) - 0. 

(i) By the orthonormality (28) and noting that a&jk = {02/Jh(o)}&jk, we have 

J 2i J 2.i 

QQf) = E E (k - alk) = {2/jR(0) - 1}T2E -"p 0 
j=O k=l j=Ok=1 

given R(0) --P2 - 0 and 

J 2' co 2i 

E E &2k c 2Q( f; fj) + 2 1 Y a.2k Op ), 
j=O k= 1 j=O k=1 

where Q(f;f,) ? 4Q(f;Ef) + 4Q(EJ;fj) -"P 0 by (ii) and (iii) as shown subsequently. 

This content downloaded from 128.84.125.184 on Fri, 22 Nov 2013 14:12:50 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


TESTING SERIAL CORRELATION USING WAVELETS 417 

(ii) By the orthonormality (28) and noting that 5ijk is real valued, we have 

J 2' J 2J n-I 2 

Q(f;Ef) f ~ %, EaJk) ~ ~-E [R(h) - ER(-(h)]yk(21rh) 
j=O k=l j=Ok=l h=1-n 

Recalling the definitions of aj(h, m) and bj(h, m) in Lemma A.1, we obtain 

n-i n-I 

0 ' EQ ( f; Ef)- -4 | a aj(h, m)|Cov{R (h),lK(m)} 
hlI-n m=I-n 

n-i n-I 

= a-4 E E lbj(h,m)|Cov{R(h), R(m)} 
h=l m=1 

n-1 n-i 

? sup Var{R(h)} E 
' 

|bj(h,m)| = 0(2j/n), (A.30) 
O<h<n h=1 m=1 

where the last inequality follows from Cauchy-Schwarz inequality and the last equality 
follows from Lemma A.1(ii) and SUPO<h<nVar{R(h)} O(n-'), which follows from 
#1R2(I) < oo, k - >-jKQ(jk,I) < oo, and 

n-I 

Varj,R(h)} = n-' ,. (I-1111|n){R 2(1) +r R(l -h)R(I + lh) + K(h,1,l It h)} 
I-1--n 

(cf. Hannan, 1970, p. 209). Hence, Q(f; Ef) -"P 0 by (A.30) and Markov's inequality. 
(iii) We now show Q(Ef;fj) - 0. From the definition of Yik in (A.28), we have 

n-1 0o 

E&Ikc iyk= -2 (1- IhI/n) R(h) ?k(21rh) - - R(h) 
h=1-n h=-oo 

n-I 

= ---2 n-1 , JhJR(h) 
- 

(2iTh) -S2 E R(h)j(q) 
h=l-n Ihl?n 

It follows that 

J 2i 

Q(Ef;fJ) = f (E&jk - aik)2 
j=O k=I 

J 2' (n-I 2 

'2or-4n-2 J hR(h)fhk(2rh)j 
j-O k=l th=l-n 

J 2' 
+ 2o- -4 R { i R(h) k(27Th)j2 

2o--4Mln + 2o-U4M2n, say. (A.31) 
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418 JIN LEE AND YONGMIAO HONG 

For the first term Ml, by Cauchy-Schwarz inequality and (16), we have 

( n-1 J 2i n-I ) 

M 'n- 24 R2 (h) E h 21 j(2,77h)12J 
h=l-n j=Ok=1h=1-n 

n-I i n-I 

' n-2 { R2(h)} , 23j (21T/2i) , (2r-h/2j)2j f(2irh/2j)12} 
h=l1-n j=O h= 1-n 

= O(23J/n2 ) (A.32) 

given '-,, R2(h) < no and the fact that given Assumption 2(i), 

n-l Ioo 3 

(2,7T/2j) E (2rh/2')2(,(2rh/2i)L2 c C? z2/(l + IzI)2adz < a -. 
h=l-n 2 

For the second term M2n in (A.3 1), we have, by Cauchy-Schwarz inequality and (16), 

J 2i 

ya 'E E R(h) jk(2,wh) 
2 

j=O k=l l hl-nJ 

' { R2(h)j jq 'f(2wrh/2i)j2 =o(22aJ/n2 -), (A.33) 
h2-!n j=O h-~n 

where the last equality follows from lh?n R2 (h) -- 0 and 

i i 

a a I6(21Th/2j) 12 ?< C2 I2h/2ja-2 = 0(22aJ/n2a-l) (A.34) 
ij0( hl-n j=O Ihlhn 

by Assumption 2(i). Combining (A.31)-(A.34), 2312/n - 0, and a > - yields 

Q(Ef;fj) -- 0. 

(iv) By the orthonormality (28) and jk2Of1- a4= frf2(wo)d = do) p2(l) < 

oo, we have Q(fJ;f) = yA??i-J+ a)1 --> 0 as J -* oo. This completes the proof. U 

APPENDIX B 
Proof of Lemma A.1. (i) Given (16), 'i(0) = 0, and r(-z) = qh(-z), we have 

a1(O,m) = aj(h,O) = O,a*(h,m) = aj(m,h) = aj(-h,-m). Hence, bj(O,m) = 

b1(h,0) = 0, and 

b1(h,m) = aj(h,m) + a*(h,m) + 
aj(h,-m) + a*(h,-m) 

- aj(h, m) + aj(m, h) + aj(h,-m) + aj(m,-h). (B.1) 

The first equality in (B.1) implies that bj(h, m) is real valued, and the second one im- 
plies that bj(h, m) = bj(m, h). 
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TESTING SERIAL CORRELATION USING WAVELETS 419 

(ii) Put c (h, m) = 2- k2 ei2 (mh)k/2J Then, using (16), we obtain 

J 

aj (h, m) 2 Tr E cj (h, m) qf(2 -rhl 2j) q' *(2 -im 2 j) 
j=O 

2-r I: (2lTh/21)/*(2fTm/2j), if m - h = 2Yr for some r E Z, 

LO, otherwise, 

(B.2) 

where we used the well-known identity that cj(h, m) = 1 if m - h = 2 r for some r F Z 

and cj(h,m) = 0 otherwise (cf. Priestley, 1981, (6.19), p. 392). 
Now, by the triangle inequality, reindexing, and (B.2), we obtain 

n-I n-I 00 00 

1: 1 h|bj (h, m)l E E JhjPjaj(h,m)j 
h=1 m=1 h=-oo m=-oo 

J o 
oo2Tl2 v 

'2 7T j E Ih l j l(2Trh12i ) q 2r/ +2 
j=O h=-oo r=-oo 

--E2j(l+v)( (27T/2j) E j27Th12jlVql(2vh12j)1 
j=O h=-oo 

co 

X< q(2rrh12j + 2-Tr)j = (2(1+v)J) 
r=-oo 

where we used the facts that given Assumption 2(i) and v' 2 i 

h =-oo-o 
0 o 

sup E I/i(z + 2rr)l C. (B.4) 
zenR r=-oo 

(iii) By reindexing and (B.2), we have 

n-I n-1 \2 x0 00 2 

n( E n bj(h, m) I C E E laJ(h, m) I 
h=l m=l / h=-xo m=-oo 

00 /10 ' C E 27r E 1 (27ThI2 i )I E Ijl (2 Trh12i + 2,7Tr) 
h=-oo j=O r=-oo 

c2 2 (2 a I E (27rh/2') given (B.4) 
h=-oo \ j=0 

J _ 1/2 2 

2 27TC2 J 2j/2 (21T/2j) 7, (2Th/2i) 1j2 

jw = h=-oo l e 

= 0(2j), 

where we used the orthonormality (17) in obtaining the last equality. 
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(iv) We first show 5UPh E2 -1l I bj (h, m) 12 c C(J + 1). By reindexing and (B.2), 

00 J 00 

E laj(h,m)f = (2T)2 E I cj(h,m) 2q4(27Th/2i)12lr(27Tm/2i) 2 
m=-oo j=m-oo 

J J 00 

? 2(2T) 2 Re c j (h,m)cjAd(h,m) 
d=l j=d m=-oo 

X ~(27h/2I4) (2d2ffh/22i) f*(2vm/2iJ)j(2 2-gm/2j) 

J o 

j=0 r=-oo/ 

J J 

+ 4v Re q (2-Th1h/2i) (2d2TJ.h/2i) 
d=l j=d 

2 ( 7T E dr-(21Th/2j + 2iTr) (2d(27Th/2j + 217r))) 
r=-00 

I 

= 12(2,Th12i ) 12 (B.5) 
j=O 

where the last equality follows from the orthonormality that for any d ' 0, 

00 

2T E z(z + 27r)q* d(z + 2vr)) = 5Od a.e. z E lR (B.6) 
r=-coo 

(cf. Hernandez and Weiss, 1996, (1.2) and its proof, pp. 101-102). It follows from 
Cauchy-Schwarz inequality, bj(h, m) = bj(m, h), Lemma A.1 (iii), (B.5), and (z) | 
C that 

n-I n-1 n-I \2 

E E E I bj (h 1, m) bj(h2, m)l 
hj=l h2=1 m=1 

? sup 1 Ibj(h,m)12 
h&EZ m=-oo 

n-1 n-i n- n 

X bh,h E E a bj(h) ?m)bj(h2,-m)1 
hh=1 h2=1 m=1 

co /n-1 n-I \2\ 

SU sup , l bj(h,m) 2t 'Y E I bj(h, m)l 
hCZ m=-oo \h=1 m=1 

= o(J + 1) 2J}. 

(v) By aj(O, h) = ai(h,O) = 0 and reindexing, we have 

n-1 n-I n-I 

E bj (h, h) = Y, a j(h, h) + E;7 aj (h, -h). (B.7) 
h=1 h=l-n h=l-n 
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Using (B.2) and the orthonormality (17), we have 

n-I h n- 

aj(h, h) = 2i ,(2 7Tl2j) q I (2,ih12J) I2J 
h=1-n j=O h=I-n 

= 3 2i - (2T/2i) 3 |2Th/21) 1h2j } 
j=O lhl-n 

= (2`+1 - 1){1 + 0[(2j/n)2--I]}, (B.8) 

where we used { 2i = 2`?1 - 1 and (A.34). For the second term in (B.7), using 
(B.2) and Assumptions 1 and 2(i), we obtain 

n-1 00 c o 

3 aj(h,-h) ? 3 aj(h,-h)l 3 3 ,r7r)12 ' C(J+ 1). (B.9) 
h=l-n h=-oo j=O r=-oo 

Combining (B.7)-(B.9), 231J2/n 0 -OJ oo, and a > 2then yields ,I} bj(h, h) = 

(2J+1 - 1){1 + O[(J + 1)/2J + (2j/n)22-I ]}. 
(vi) Using a(h,0) = a(0, m) = 0 and reindexing, we have 

n-I n-I n-I n-I 

3 3 bb2(h,m) = 3 3 [aj(h,m) + aj(-h,-m) + aj(h,-m) + aj(-h,m)]2 
h=1 m=1 h=1 m=1 

n-I n-I 

=o 3 3 [a2(h, m) + a2(-h,-m) + a2(h,-m) + a2(-h, m)] 
h=I m=I 

n-i n-I 

+ 2 3 3 [aj(h, m)aj(-h,-m) + aj(h,-m)aj(-h, m)] 
h=l nm=1 

n-I n-1 

+ 2 3 3 [aj(h, m)aj(h,-m) + aj(-h,-m)aj(-h, m)] 
h=1 m=I 

n-1 n-i 

+ 2 3 3 [aj(h, m)aj(-h, m) + aj(-h,-m)aj(h,-m)] 
h=I m=l 

n-I n-i n-I n-1 
no 3 3 a2(h,m) + E 3 

aj(h,m)12 
h=I-n m=1-n h= I-n in= I-n 

n-I n-I n-I n-i 

+ E E aj(h,m)aj(h,-m) + E E aj(h,m)aj(-h,m) 
h=l-n m=I-n h=l-n m=I-n 

= Aln + A2n + A3n + A4n, say. (B.10) 

We first consider AIn. Write 

n-I no n-I 

Amn 3 3 a 2(h, m)- 3 3 a2(h, m) =nAi-n Ai2n, say. (B.1) 
h=I-n iv=-no h=l-n ImI?n 
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Following a reasoning analogous to that of (B.5), we have 

AJ n-i oo 

Alln = (27) cj(h,M)Cj_ldI(h,m) '(2vThl2.j) '(2 Id 2,7Thl2i) 
d=-Jj=ldl h=1-n m=-oo 

X j*(2vm/2j)G*(2 d12ffm/2j) 

J J n-I oo 

= (27J)2 E X (2vh/2i) '(2Id12lTh/2i) 
d=-Jj=ldl h=l-n r=-oc 

X qi*(2irh/2J + 2fr)ik(2 dl(2iTh/2] + 2lTr)) by (B.2) 

i J n-1 

= 2ir { ,(2vhl2j) (2 
I 

2Thl2i) 
d=-Jj=Idj h=1-n 

00 

X 2i7- I 1(2vh/2j + 2ffr)i/J*(2dK(2Trh/21 + 21Tr)) 
r=-os 

by (B.13), which follows 

J n-1 

= 21T E E | E (27Th/2i) 2 by (B.6) 
j=O h= 1-n 

= (2J`1 
- l){ + o(1)}, (B.12) 

where the third equality follows because for any z E R, and any d, r E 2, 

if(z) i/(2 1Iz)>*(z + 2i1Tr)ifr*(2 dI(z + 2vr)) 

= ,,(z)l(2ldz)q(z + 2Trr)f*(2dI (z+ 2Trr)), (B.13) 

given Assumption 2(ii). Also, the last equality follows from (B.8) and 23J/2/n -* 0. 
Next, using aj(h, m) = aj(m, h) * and (B.5), we obtain 

Ai2n ? E 
7 

aj(h,m)12 = E I aj(m,h) 2 

h=-oo jmI?n h=-oo jmj'n 

J 

=2,7T I I I lrl (2 rml 2j) 1 2 = o (2j), (B.14) 
j=O Iml?n 

where the last equality follows from (A.34) and 23J/2/n -4 0. Consequently, from (B.l 1), 
(B.12), and (B.14), we obtain 

Aln = (2J`1 - 1){ + o(1)}. (B.15) 

By reasoning similar to that of AIn, we can also show 

A2n = (2`+ - I){l + o(1)}. (B.16) 
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Now, we consider A3,. By reindexing, (B.2), and ?*(z) = f(-z), we can write 

( J n-1 n-I 

A3n = (2 g) 2 cj(h,M)Cj_IdI(h,-m) lr(2,whl2j) lr(2 1d12,7Thl2i) 
d=-Jj= Idl h=I-n m=n-1 

X k-(27T/2j) *(2 2Id12 /-m2i). 

Given (B.2), we have cj(h,m)cj-IdI(h,-m) = 1 if m - h = 2 r and m + h = 2j-Id Ir' for 
some r, r e 2, and cj (h, m)Cj-I d I(h, -im) = 0 otherwise. It follows that 

J J 00 00 

A (2rT)2 Id j (rTrr7(Tr' -2IdlTr) 
d=-Jj=ldl r'=-x r=-oo 

X (Fr'/2Idl ? fr)b (i7rr' + 2IdllTr)l 

' C E E { lql4(7Ti)l { I (2Tr) } = O{(j + 1)2}, (B.17) 
d=-Jj=ld| 1I=-oo J r=-c 

where the second inequality follows by change of variable I = r' - 2IdIr and |(z) < 

C. Similarly, we have A4n = O{(J + 1)2}. Combining this with (B.10) and (B.15)- 
(B.17), we obtain Em = 2(2J+i - 1)tl + o(1)}. This completes the 
proof. U 
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